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gation is not  ideal. The origin of  the diffuse scattering 
is not  clear but an addit ional  order of  vacancies seems 
probable.  The scattering has some of  the features 
typical for vacancy ordering in transit ion-metal car- 
bides (Sauvage & Parthr ,  1972). 
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Simple electron-microscopy techniques are described which allow one to detect the presence of two 
enantiomorphous forms of a structure within an apparent single crystal. The first method consists of a 
characterization of the interface between the two enantiomorphs. In the second method advantage is 
taken of violations of Friedel's law which can occur in non-centrosymmetric crystals. These techniques 
have been illustrated by an analysis of the domain structure in ordered LiFesOs, which has a space 
group P4132 or P4332. Consistent results were obtained with both methods. The first method yields a 
more complete description of the domain structure. Methods which can be used to determine the 
absolute configuration of the structure in a part of the crystal are discussed. 

1. Introduction 

When a structure belongs to a space group which 
does not contain a symmetry operat ion of  the second 
sort, that  is an operation which does not involve an 
inversion or a reflection, then it can exist in either a 
r ight-handed or a left-handed form. In some cases 
these two forms have different space groups, which 

are an enant iomorphous pair  of  space groups. Wi th  
ordinary X-ray diffraction techniques it is impossible 
to distinguish between these two enant iomorphous  
forms. It is necessary to include anomalous  scattering 
in the calculations and often very accurate intensity 
measurements are necessary. The use of  anomalous  
scattering of X-rays to determine the absolute con- 
figuration of  a structure has been reviewed by Rama-  
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seshan (1964). Recent contributions to this field in- 
elude the use of the shape of X-ray intensity spectra 
(Burr & Woods, 1973) and applications of the Kossel 
effect (Brfimmer, Beier & Neiber, 1973). 

These X-ray methods have their limitations. The 
structure should contain at least two different species, 
one of which should be an anomalous scatterer. The 
latter condition cannot always be fulfilled with com- 
monly available X-ray wavelengths, for instance, if 
a structure contains only light elements. Iwasaki (1974) 
has shown that there may be some, so far imaginary, 
non-centrosymmetric structures, for which Friedel's 
law holds even with anomalous dispersion. In addition, 
one would have to be sure that both forms of the 
structure do not coexist on a very fine scale, viz. smaller 
than the diameter of an X-ray beam, within an ap- 
parent single crystal. This will depend on whether or 
not it is possible to have a low-energy interface between 
the two structures, when the crystal axes in both 
remain parallel. 

In this paper it will be shown that if both enantiomor- 
phous forms do occur in the form of very small 
domains, the presence of the right and left-handed 
forms can be confirmed by contrast experiments in 
the electron microscope. Two different methods have 
been used, the first method consists of an analysis of 
the interface between the two structures. This inter- 
face can be described by a set of geometrical operations 
which convert the structure on one side into the struc- 
ture on the other side of the interface. With simple 
contrast experiments it can be ascertained whether or 
not the operations characterizing the interface contain 
an inversion operation. A similar method of analysis 
was used by McLaren & Phakey (1966) in a study of 
Brazil twinning in quartz. The second method which 
can be used to confirm the results of the first, takes 
advantage of a violation of Friedel's law in electron 
diffraction. Exceptions to Friedel's law in electron 
diffraction were first observed by Thiessen & Molibre 
(1939) and later by Miyake & Uyeda (1950). A theo- 
retical discussion of Friedel's law in n-beam dynamical 
theory was given by Fujimoto (1959), Cowley & 
Moodie (1959) and recently by Serneels, Snykers, 
Delavignette, Gevers & Amelinckx (1973), who speci- 
fically considered the contrast between domains related 
by an inversion operation in non-centrosymmetric 
crystals. 

2. Structural information 

The compound which has been studied is ordered 
LiFesOs. The structure goes through a phase trans- 
formation above 750°C, which has been shown to 
be of the order-disorder type (Braun, 1952). The dis- 
ordered structure has the inverse spinel structure (space 
group Fd3m, lattice parameter a=8.33  A), with Fe a+ 
on the tetrahedrally coordinated sites and a mixture 
of Li + and 3Fe 3 + on the octahedrally coordinated sites. 
Below 750 °C, Li + and Fe 3 + order and the space-group 

symmetry is lowered to P4t32 or P4332. This is ac- 
companied by a slight change in lattice parameter 
(Brunel & de Bergevin, 1964). The atomic coordinates 
for the ions used in this work were given by Braun 
(1952) using the equivalent positions for P4332 (No. 
212, International Tables .for X-ray Crystallography, 
1969)" 4 Li at (b); 12 Fe at (d) with x = 3 ;  8 Fe at (c) 
with x = 0 ;  24 oxygen at (e) with x = ~ ,  y = - ~ ,  z = 8  x, 
8 oxygen at (c) with x = ~ .  Small corrections for these 
coordinates were neglected, i.e., we assumed that the 
disordered structure is an ideal spinel structure. The 
complete set of coordinates of the octahedral sites 
is given in Table 1. A projection of these sites on the 
(100) plane is given in Fig. 1. 

Table 1. Coordinates of  oetahedral sites 

No. x y z 
1 0.625 0.625 0.625 
2 0.125 0.875 0.375 
3 0.375 0.125 0.875 
4 0.875 0.375 0.125 
5 0.125 0-375 0.875 
6 0-875 0.125 0-375 
7 0.375 0-875 0-125 
8 0.375 0-625 0.375 
9 0.375 0.375 0.625 

10 0.625 0.375 0.375 
11 0.625 0.125 0.125 
12 0.125 0-625 0.125 
13 0-125 0-125 0.625 
14 0.875 0.875 0-625 
15 0.625 0.875 0-875 
16 0.875 0.625 0.875 

Considering now one space group only, it can be 
seen from Fig. 1 that the set of octahedral sites can be 
divided into four subsets, one of which contains only 
lithium ions and the other three only iron ions. When 
ordering sets in, the lithium ions can occupy any of 
these four subsets. After ordering, the single crystal 
is fragmented into domains in a way similar to or- 
dered metallic phases (e.g., see Marcinkowski, 1961). 
Within each domain, the lithium ions will occupy 
only one subset and at the boundary between domains 
they will be out of phase. These boundaries can be 
described by the vector which translates the lithium 
ions from one subset to another. A ½(110) type vector 
is a lattice vector of the disordered structure, hence, 
a translation of the ordered structure over this vector 
does not affect the oxygen ions or iron ions in tetra- 
hedral sites, but it does transfer the Li ions from one 
subset to another. This holds for either one of the 
space groups. 

There are thus actually eight different subsets out 
of the 16 octahedral sites which the Li ions can occupy, 
and it is possible to have a boundary between any pair 
of these. The eight arrangements are enumerated in 
Table 2. The arrangements 1L and 1R have been 
taken rather arbitrarily as 'basic' arrangements for 
P4332 and P4~32 respectively. These two arrangements 
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can be brought  into coincidence with one another  by 
an inversion through the point  (~,-~,~8), hence the 
boundary  between these two arrangements  will be 
called an inversion boundary.  On the other hand, a 
boundary  between 1L and 2R would not only involve 
an inversion through (s s_ s~ but also a translation \ 8 ,  8 ,  8 ]  

over a vector ½[110]. 

Table 2. Atomic  coordinates o f  the eight ordered 
arrangements 

Symbol Arrangement Atomic coordinates* 
1L P4332 Li: 1, 2, 3, 4I" 
2L P4332+½[110]:~ Li: 7, 10, 13, 16 
3L P4s32+½[101] Li: 6, 9, 12, 15 
4L P4332+½[011] Li: 5, 8, 11, 14 
1R P4132 Li: 1, 5, 6, 7 
2R P4~32+½[110] Li: 4, 8, 13, 15 
3R P4~32+½[101] Li: 3, 10, 12, 14 
4R P4132+½[011] Li: 2, 9, 11, 16 

* The octahedral sites not occupied by lithium are occupied 
by the iron ions. Only the positions of the lithium ions are 
given. The positions of the oxygen ions and tetrahedral ions are 
the same for all the ordered arrangements. 

I" These numbers refer to the numbers of the octahedral 
sites as given in Table 1. 

:I: P4332+½[110] means that this arrangement is derived 
from the 'basic' P4332 arrangement by giving the Li ions a 
displacement over a vector ½[110]. 

This description of  the boundaries is not  unique. 
In principle, each boundary  involving an inversion 
can be described as a pure inversion boundary  by 
proper  choice of  the inversion point. Here the inver- 
sion point  is considered to be fixed. In the context 
of  this paper  ' inversion' means inversion through the 
point  ~,rs ~,s ~J.s~ The boundaries could also be described 
by means of  a reflection operation,  for instance with 
respect to the (110) planes, which may or may not  be 
accompanied by a translation. 

One could have a total of  28 boundaries between 
the eight possible arrangements.  However,  only seven 
boundaries,  distinct in the geometrical operat ions 
characterizing them, can occur. These boundaries are 
indicated schematically in Fig. 2. There are three trans- 
lation boundaries,  one inversion boundary  and three 
boundaries described by an inversion and a translation. 
All 28 boundaries are enumerated and classified in 
Table 3. 

Table 3. Classification o f  boundaries 

Symbols used in this table are explained in Table 2 and in Fig. 2. 

T, T2 T3 I I+  7"1 l+T2 I+T3 
1L-2L 1L-3L 1L-4L 1L-1R 1L-2R 1L-3R 1L-4R 
3L-4L 2L--4L 2L-3L 2L-2R 2L-1R 2L--4R 2L-3R 
1R-2R IR-3R 1R-4R 3L-3R 3L-4R 3L-1R 3L-2R 
3R-4R 2R--4R 2R-3R 4L-4R 4L-4R 4L-2R 4L-1R 

i Q ,o 

® ,@ 

P4s32 
l_ ~ = I/z Jail] 

P41 32 

@ Fe or Li atom at a level nxOo/8 above the plane of the paper 

Fig. 1. Projection of the octahedral sites on the (100) plane for the two enantiomorphs. The unit cell indicated is the conventional 
one for the P4332 spacegroup. It is indicated how the octahedral sites are aligned in (011) directions with one Li ion followed 
by three Fe ions. 
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The ordered and disordered structures contain 
stacking faults. It was shown by Van der Biest & 
Thomas (1974) that these faults lie on {110} planes 
and have a displacement vector of-}(110), which is 
always perpendicular to the fault plane. It will be 
shown that in the ordered structure an inversion can 
occur at these faults. 

3. Contrast in the electron microscope 
3.1. Contrast at domain boundaries 

It is useful to reconsider here the two-beam dyna- 
mical theory of contrast at a stacking fault in crystals 
[e.g., see Whelan & Hirsh (1957); Hirsch, Howie, 
Nicholson, Pashley & Whelan (1965). The equations 
for the faulted crystal can be derived from those of 
the perfect crystal simply by modifying the Fourier 
coefficient of the crystal potential in the bottom part 
of the crystal by a phase factor exp(&), i.e., 

Vo b= V~ exp (is) (1) 

where b indicates the bottom of the crystal and t 
indicates the top (facing the electron beam). ~= 
-2rig.R, where R is the displacement of the bottom 
relative to the top and g is the reciprocal-lattice vector 
corresponding to the reflection excited. It is understood 
here that the potential of the top of the crystal V'(r) and 
the potential at the bottom P ( r )  have both been 
referred to the same origin. Equation (1) implies that: 

F ~ -  t - F o exp (is) (2) 

This equation yields another interpretation for the 
phase angle s: s is the difference between the phase 
angles in the structure factor expressions for the top 
and bottom of the crystal, calculated with respect to a 
common origin. 

In the case of a boundary between a left-handed 
and a fight-handed crystal, we can write quite generally 
the following expression for the structure factor: 

l l 
Fo=lFol  exp (icdo) F ;=IFgl  exp (isg). 

In particular, for the moduli of the structure factor it 
follows regardless of choice origin: 

IF' l=l l. 

P4332 I ~  P4t32 
I p41524/[110] P4332+ g [110] 

p4332-1-/[,0l] ( ~ ¢ / )  x ~ ' x ~ 3  p4,32+/[,0,] 
I P433Z÷E[OIl] ~ ~ P413Z+/[Olll 

Fig. 2. Schematic representation of the seven different bound- 
aries in ordered LiFe5Os. The labels of the ordered arrange- 
ments are explained in Table 2. 

Hence, it follows that: 

o r  

with 

FZo=F o e x p  " t r r [ l ( s o - s o ) ]  

F ~ = F ~  exp (&) 

l r O~ = Sg --  Sg . 

(3) 

(4) 

If now a boundary between the two enantiomorphs is 
considered with the right-handed structure at the top 
of the crystal facing the electron gun and the left- 
handed structure at the bottom, equation (3) implies 
that 

V o -  V o exp (ic0. (5) 

Hence, the relationship between the crystal potential 
in the two parts of the crystal on either side of this 
boundary is the same as in the case of a stacking fault. 
The results of the two-beam dynamical theory of 
contrast at a stacking fault apply equally well to this 
boundary. A boundary between two enantiomorphs 
will be imaged as s fringes where s is now equal to the 
difference in the phase angle of the structure-factor 
expression calculated with respect to the same origin. 
This phase difference is independent of the actual 
choice of origin. 

In the dynamical theory of contrast the assumption 
is usually made that the crystal is centrosymmetric so 
that one can write V o = V_ o (or F o = F_g). In a two-beam 
case this assumption is not really necessary as one is 
free to chose the origin so that for a particular beam 
F~ = FLo =F~* which means that in the example 
above s~=0.  It is clear that this approach to the 
contrast problem at an inversion boundary will not 
be valid in the case of a many-beam situation, because 
it is then not possible to choose an origin so that the 
condition Vo= V_ o is simultaneously fulfilled for all 
the beams involved. 

Using a simple structure-factor program, the values 
of s were calculated for each of the seven boundaries 
which occur in ordered LiFesOs. The atomic coordi- 
nates for the iron and lithium ions on the octahedral 
sites given in Table 2 were used. The results are shown 
in Table 4. In the case of translation boundaries the 
value of s is also equal to - 2 n g .  R. Wherever ~ = 0  
or 2n, a domain boundary will be out of contrast. 
For reflections of the type 110, 211, 103, 123, s takes 
the value 0, n. For reflections of the type 102, 302 s 
takes the value 0, n for translation boundaries but 
only _+ n/2 for inversion boundaries. For all spinel 
reflections s = 0  and the boundaries should be out of 
contrast. 

3.2. Contrast between domains 

In a second method, by which the presence of two 
enantiomorphous structures can be verified, one takes 
advantage of the violations in Friedel's law which 
take place in electron diffraction in certain multiple- 
beam situations. What is meant by a violation of 
Friedel's law is that + g  and - g  do not have the 
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Table 4. Values o f  the phase angle 

C I"1 T2 T3 I I+TI  1+7'2 I+T3 
110 0 n n 0 0 n 
lIO o ~ ~ ~ ~ o o 
lOl n o n o n 0 
10T n 0 n n 0 n 0 
011 n n 0 0 n n 0 
01I n n 0 n 0 0 n 
112 0 n n 0 0 n 
I12 0 n n n n 0 0 
112 0 n n n n 0 0 
i-i"2 0 n n 0 0 n 
211 n n 0 0 n n 0 
21i n n 0 n 0 0 n 
2 i l  n n 0 n 0 0 n 
21-1" n n 0 0 n n 0 
121 n 0 n 0 n 0 n 
12T n 0 n n 0 n 0 
i21 n 0 n n 0 n 0 
T2T n 0 n 0 n 0 n 
120 n n 0 n/2 - h i 2  - n / 2  n]2 
120 n n 0 - n / 2  n/2 n/2 - n / 2  
210 n 0 n n/2 - n / 2  n/2 -n]2  
~10 n 0 n n/2 --n/2 n/2 --n/2 
021 0 n n n/2 n/2 --n/2 --n/2 
021 0 n n n/2 n/2 -n[2  --n/2 
012 n 0 n - n / 2  n/2 - n / 2  n/2 
0T2 n 0 n n/2 - n / 2  n/2 - n / 2  
102 n n 0 n/2 - n / 2  - n / 2  n/2 
i02 n n 0 - n / 2  n/2 n/2 - n / 2  
201 0 n n --n/2 - n / 2  n/2 n/2 
20T 0 n n n/2 n/2 - n / 2  -n]2  

5.  R e s u l t s  

From systematic extinctions in the precession photo- 
graphs it was confirmed that the space group of the 
disordered structure is Fd3m. The precession photo- 
graphs of  the ordered compound showed the presence 
of systematic extinctions required for the space groups 
P4132 and P4332. The non-systematic extinctions in 
these photographs could be accounted for by the 
atomic positions given by Braun (1952). 

Fig. 3 shows a series of  t ransmission electron micro- 
graphs taken under a variety of diffraction conditions. 
Fig. 3(a) was taken under conditions approaching a 
two-beam case as the 024 and 024 reflections are not 
allowed. Fig. 3(b), (c) and (d) were taken with a 
systematic row of  reflections operating with the indi- 
cated reflection on the Ewald sphere. Al though the 
presence of  the systematic beams will alter the detail 
of  the contrast at the boundary,  it will not affect the 
visibility criteria derived for two-beam conditions. The 
visibility or invisibility of  the boundaries marked by a 
lower-case letter in Fig. 3(a) has been tabulated in 
Table 5. Compar ison of  these results with the calcula- 
tions given in Table 4 allows one to identify each of  
the boundaries with one of  the seven types of  bounda-  
ries possible. This identification is made in the last 
column of Table 5. 

same intensity even when the excitation errors are the 
same. At an inversion boundary,  when + g is operating 
in one part  of  the crystal - g  is operating in the inverted 
part  with exactly the same excitation. When Friedel 's  
law is violated then the domains  should show up with 
different intensities. This situation was studied by Ser- 
neels et al. (1973) and they concluded the following: 
(i) A mul t i -beam condit ion is necessary to observe any 
contrast at all. (ii) Friedel 's law holds for the direct 
beam in a general mult iple-beam situation. It does not 
hold in general in dark field. (iii) The difference in 
intensity depends strongly on the thickness of the 
crystal. (iv) If  the only reflections excited belong to a 
zone axis along which  the crystal displays a center 
of  symmetry in projection, no contrast should be 
observed in dark field. 

4 .  E x p e r i m e n t a l  t e c h n i q u e s  

The specimens studied were flux-grown single crystals 
of  LiFesOs. A Buerger precession camera was used to 
check the space-group symmetry of  the structures 
involved. The specimens used for this study were 
annealed at 850°C and furnace cooled. Standard thin 
sections were prepared. Final  thinning was done using 
an ion-bombardment  technique (Barber, 1970) or by 
chemically polishing in hot  phosphoric acid. The spe- 
cimens were examined in a Hitachi HU-650 microscope 
operated at 650 kV. 

Table 5. Analysis  o f  Fig. 3 

Boundary* g=Tl0 g = 0" f l  g=i01 Type 
a NCf  NC C~ I+ T2 
b NC C C T1 
c NC C NC I+ 7"3 
d C NC C T3 
e N C  C N C  I +  7'3 
f C NC NC I+ 7"1 
g NC C C 7'1 
h C NC NC I+ 7'1 
i C C N C  7"2 
j c c NC T2 
k C NC NC 1+ 7"1 
l N C  C N C  I +  1"3 

* The boundaries are labeled in Fig. 3(a). 
t NC: boundary not  in contrast. 

C: boundary in contrast. 

The internal consistency of the method of  analysis 
can be checked by labeling each domain  as follows: 
because at present, these electron-microscopic methods 
do not yet allow the determination of  the absolute 
configuration, it was assumed that the domain  which 
runs vertically through the micrograph has a left- 
handed P4332 arrangement.  It was also assumed that  
it was the 'basic '  1L arrangement.  The latter assump- 
tion is equivalent to choosing an origin. Once these 
assumptions are made, the arrangements in all the 
other domains  can be found through the character 
of  their boundaries derived in Table 5, and the use of 
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Fig. 3. An identical area of an ordered crystal photographed under five different diffraction conditions. The operating reflections 
in (a), (b), (c) and (d) are indicated by vectors. The diffraction pattern corresponding to (e) and ( f )  is shown in Fig. (g) (BF: 
bright field; DF:  dark field with reflection used indicated). 

[ To face p. 74 
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O1 DF 

D 

Fig. 4. Bright field (a) and two dark fields (b,c) showing that  a few fairly s trong reflections off the operat ing row are sufficient to 
produce  strong differences in contrast  between enan t iomorph ic  domains  (e.g. at A and B). Across translation boundaries there 
is no difference in background  intensity (e.g. at C and D). 
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- t  ~ 

II1: 

N 

Fig. 5. Three stacking faults forming a triple junction in ordered lithium ferrite. The same area was photographed under four 
different diffraction conditions, characterized by the g vectors in the figures. 
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1 

" O ,  • 

i .  

, 0  

b 

Fig. 6. (a) was taken under the conditions shown in (b). fc) was taken under the diffraction conditions indicated in the figure. 
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Table 3. This was done in Fig. 3(a). This labeling of 
domains provides a check on the identification of the 
boundaries, e.g., if a is a boundary between 1L and 
3R and b is a boundary between 3R and 4R, then 
clearly the character of c is fixed and c has to behave as a 
1 L - 4 R  boundary, i.e., 1+7"3. This has indeed been 
found by contrast experiments (Table 5). Hence, a 
complete internally consistent picture is obtained of 
the relationships between the domains. 

An independent check on these results is provided 
in Fig. 3(e), (f)  and (g). The same area was imaged 
here under multi-beam conditions [Fig. 3(g)], hence 
one may expect violations of Friedel's law at inversion 
boundaries. The foil was wedge-shaped with thinner 
parts at the bottom of the pictures. The fringes in 
Fig. 3(e) running from right to left are thickness 
fringes. These remain continuous across the boundaries 
in the bright-field picture. In dark field, however, these 
fringes change color at some boundaries (e.g. at a 
and c) but remain continuous across others (e.g. at j 
and g). The latter ones may be expected to be trans- 
lation boundaries whereas the first should be inversion 
boundaries. Comparison with Fig. 3(a) shows that 
these boundaries are the same ones for which the 
first method showed that an inversion was involved. 

Fig. 4 provides another example where the two 
enantiomorphous structures can be distinguished by a 
difference in background intensity. This specimen was 
chemically thinned and some etching had occurred at 
the boundaries. The presence of two strong 'accidental' 
reflections was sufficient to provide a very strong con- 
trast between enantiomorphous domains, e.g. at A and 
B. There is no difference in background intensity across 
translation boundaries, e.g. at C and D. 

Fig. 5 shows three stacking faults on {110} planes 
meeting along a line. The displacement vector of these 
faults was determined as ¼(110) plus a spinel lattice 
vector. The boundary 4 joining fault 1 is a translation 
boundary. The contrast in Fig. 5(d) can be explained 
only if faults 1 and 2 are simultaneously boundaries 
between the left and right-handed structures. The dis- 
placement vectors of these faults are: RI,=¼[101], 
Rib =¼[]'0T], R2=¼[110]. For g=T02, this yields for the 
phase angle ~1, = n/2, ~lb = - n / 2  and c~2 = -n /2 .  Hence, 
if these faults were simple translation faults, they should 
be visible as ~ fringes with ~= + n/2. If these faults 
also included an inversion operation then a phase angle 
of + n/2 would be added (see Table 4). Taking the 
plus sign yields: ~ l ,=n ,  ~ b = 0  and ~2=0. Hence, the 
b parts of fault 1 and fault 2 will be invisible. This 
matches the observations. 

Additional evidence that stacking faults can also 
serve as the boundary between enantiomorphous forms 
is given in Fig. 6. Fig. 6(a) was taken under the dif- 
fraction conditions shown in Fig. 6(b). Fig. 6(c) shows 
that the fault A B C  seen edge on in (a) is indeed a 
stacking fault. Analysis of the boundaries a and b 
showed that they were pure inversion boundaries. The 
difference in background contrast at A and C indicates 

that an inversion takes place at the stacking fault. 
However, there should not be any difference in back- 
ground intensity at B. This is indeed observed. 

6. Discussion 

The domain size in the ordered crystal depends on 
the heat treatment but is usually of the order of 1/zm 
or smaller, and, hence well below the diameter of an 
X-ray beam. It is clear that a very fine intergrowth of 
the two enantiomorphous structures would give rise 
to a spurious center of symmetry in diffraction even 
when an X-ray wavelength is used for which iron is a 
strong anomalous scatterer. The success of the electron- 
microscopic methods does not depend on the presence 
of a particular atomic species in the compound. The 
method should also be applicable for structures con- 
taining only light-weight elements. 

In the multibeam method, the contrast in dark 
field arises from a complex interaction between n beams. 
However, one cannot show in general that the difference 
in intensity between the inverted domains will be large 
enough to be detectable. This difference in intensity 
will depend on the details of the structure, the thickness 
of the sample and the diffraction conditions. It is 
shown by Serneels et al. (1973) that for very thick foils 
the contrast will be destroyed by absorption. 

The analysis of an inversion boundary using dif- 
ferent g vectors should be applicable to all crystals in 
which enantiomorphous domains occur. The success 
of this method hinges on the fact that there is a dif- 
ference in phase angle of a particular reflection for 
the two enantiomorphous structures when both are 
referred to the same reference frame. Reflections for 
which this phase-angle difference is not equal to zero 
can always be found. This method has the additional 
advantage that it yields a complete description of the 
interface between the two structures. Not only can it 
be established that an inversion operation is involved 
at the boundary but any additional translation can be 
determined as well. In general, these translations are 
not known a priori. In the case of ordered LiFesO8 a 
precise description of the domain structure can be 
given because the ordered structure is derived from 
the relatively simple spinel structure. This is the reason 
why lithium ferrite forms an ideal case to illustrate 
the use of these electron microscopic techniques. 

For all practical purposes it might be sufficient to 
establish the presence of the two enantiomorphous 
forms within an apparent single crystal. The microsco- 
pic methods described in this paper have not yet been 
extended to determine the absolute configuration of 
the structure in a part of the crystal. In principle this 
possibility exists. In the case of the multibeam method, 
one should be able to predict, using a many beam 
dynamical theory for non-centrosymmetric crystals, 
which form should show up bright in dark field for a 
given crystal thickness and diffraction condition. In 
general, an electronic computer would have to be 
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used for this. The problem is completely analogous 
to the absolute determination of the orientation of a 
non-centrosymmetric crystal, which has reflection sym- 
metry. This problem has been solved for hexagonal 
CdS by Goodman & Lehmpfuhl (1968), who used a 
convergent-beam technique and a multiple-slice cal- 
culation for n-beam diffraction. 

In the case of the interface analysis, it should be 
possible to predict for an interface inclined with respect 
to the beam which form is at the top of the crystal 
facing the electron gun. This can only be done when 
the difference in phase angle c~ is different from n. In 
the case of ordered lithium ferrite this is the case for 
reflections of type 012 or 203 when ~=  + n/2. The 
problem is then reduced to a determination of the 
character of a stacking fault in f.c.c, metals (Hirsch, 
et al., 1965). A systematic study of this problem for 
o~ = n/2 has not yet been undertaken. 

This work was done under the auspices of the U. S. 
Atomic Energy Commission. 
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Schwinger and Anomalous Scattering of Neutrons from CdS* 
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Polarization-sensitive neutron scattering from CdS single crystals has been observed for several Bragg 
reflections. This effect arises from interference between neutron spin-neutron orbit (Schwinger) scatter- 
ing and 90 ° phase-shifted scattering due to such sources as absorption and a noncentrosymmetric crystal 
structure. The observed flipping ratios are in excellent agreement with those calculated on the basis of 
the accepted conventions for the determination of absolute configuration by X-ray or neutron diffraction. 
Possible application of the Schwinger scattering to the routine determination of absolute configurations 
is discussed. 

Introduction 

Polarized neutron diffraction from vanadium crystals 
(Shull, 1963) has given evidence for a polarization- 
sensitive scattering amplitude that is both asymmetric 
and dephased by 90 ° with respect to 'normal '  scattering. 
This effect (Schwinger scattering) has been attributed 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

to a neutron spin-neutron orbit interaction with the 
atomic Coulomb field. 

We have performed a similar experiment with a 
crystal of CdS, a system for which the Schwinger scat- 
tering terms of cadmium and sulfur combine with the 
imaginary components of the scattering amplitude due 
to the cadmium resonance absorption and the non- 
centric sulfur positions. The polarizationse-nsitive 
scattering was indeed readily observed and its ampli- 
tude found in good agreement with that calculated. 


